Zusammenfassung
Eine erhöhte Nackentransparenz, welche im Ultraschall von 11 - 14 Schwangerschaftswochen
darstellbar ist, wird bei etwa 75 % der Feten mit Trisomien 21, 18 und 13 und bei
solchen mit Turner-Syndrom gefunden. Die Messung der fetalen Nackentransparenz ist
heute die sensitivste Methode, um nach Chromosomenstörungen, Herzfehlern, genetischen
Syndromen und Skelettanomalien zu suchen und eine erhöhte Nackentransparenz wurde
bei einer Vielzahl fetaler Strukturanomalien beschrieben. Das Bindegewebe kann als
ein Netz unlöslicher Fasern, verbunden durch lösliche Polymere, der Kittsubstanz,
verstanden werden. Viele der unlöslichen Kollagenfasern werden durch Gene auf den
Chromosomen 21, 18 und 13 kodiert. Eine entsprechende Trisomie führt daher zu einer
veränderten Zusammensetzung des Bindegewebes. Proteoglykane und Hyaluronsäure spielen
eine wichtige Rolle bei der Wasserbindung im Gewebe und damit bei der Ödementstehung
in der Haut. Feten mit Trisomie 21 weisen in ihrer Haut große Mengen an Hyaluronsäure
auf, welches eine hohe Wasserbindungskapazität besitzt. Die Superoxid-Dismutase, welche
den Abbau der Hyaluronsäure durch Schutz vor freien Radikalen verringert, wird ebenfalls
durch ein Gen auf Chromosom 21 kodiert. Chondroitinsulfat-Proteoglykane besitzen einen
Einfluss auf die Migration von Zellen, insbesondere von Neuralleistenzellen; und auch
auf die Gefäßentwicklung. Indirekt beeinflussen sie das Wachstum von Blutgefäßen und
Lymphgefäßen durch die Bindung von Wachstumsfaktoren. Dies ist eine Übersichtsarbeit,
die publizierte Studien zur Pathophysiologie der erhöhten Nackentransparenz hinsichtlich
der Entwicklung der Blut- und Lymphgefäße und der Veränderungen der Komponenten der
extrazellulären Matrix und ihre genetische Regulation zusammenfasst.
Abstract
Nuchal skin edema at 11 - 14 weeks of gestation, revealed by ultrasonography as increased
nuchal translucency, is found in about 75 % of fetuses with trisomies 21, 18 and 13
as well as those with Turner's syndrome. The measurement of nuchal translucency at
11 - 14 wks has today become the most sensitive screening method for aneuploidy, cardiac
defects, skeletal anomalies, genetic syndromes and is associated with a series of
structural abnormalities. The simplified picture of connective tissues as frameworks
of insoluble fibrils and soluble polymers highlights the importance of collagen fibres
in resisting tensile stress and of proteoglycans in binding large amounts of water,
thus swelling and resisting compressive forces or facilitating the formation of an
interstitial edema. Many of such insoluble fibrils are encoded on either chromosomes
21, 18 or 13 and an altered composition of the extracellular matrix is the consequence
of the respective trisomies. Hyaluronan is a molecule which can bind large amounts
of water. Superoxide dismutase, which protects against free radicals-mediated degradation
of hyaluronan, is encoded by chromosome 21 and may decrease hyaluronan degradation.
The key feature of many of the glycoproteins is their ability to interact with cells,
matrix proteins or growth factors and to have thus the ability to influence cell behaviour
and migration by allowing attachment. Chondroitin sulfate proteoglycans are known
to have an influence on cell migration, in particular on the migration of neural crest
cells and outgrowing axons. The migration of blood and lymphatic vessel forming cells
is also affected. This review summarizes the various studies on the pathophysiology
of increased nuchal translucency regarding vascular and lymphatic development and
the genetic regulation of an abnormal extracellular matrix.
Schlüsselwörter
Nackentransparenz - Pathophysiologie - Blutgefäße - Lymphgefäße - extrazelluläre Matrix
- Gen-Dosis-Effekt
Key words
Nuchal translucency - pathophysiology - blood vessels - lymph vessels - extracellular
matrix - gene dosis effect
Literatur
1
Hyett J A, Moscoso G, Nicolaides K H.
Morphometric analysis of the great vessels in early fetal life.
Hum Reprod.
1995 a;
10
3045-3048
2
Hyett J A, Moscoso G, Nicolaides K H.
Increased nuchal translucency in trisomy 21 fetuses: relation to narrowing of the
aortic isthmus.
Hum Reprod.
1995 b;
10
3049-3051
3
Hyett J, Moscoso G, Papapanagiotou G, Perdu M, Nicolaides K H.
Abnormalities of the heart and great arteries in chromosomally normal fetuses with
increased nuchal translucency thickness at 11 - 13 weeks of gestation.
Ultrasound Obstet Gynecol.
1996;
4
245-250
4
Hyett J, Moscoso G, Nicolaides K.
Abnormalities of the heart and great arteries in first trimester chromosomally abnormal
fetuses.
Am J Med Genet.
1997;
69
207-216
5
Snijders R JM, Noble P, Sebire N, Souka A, Nicolaides K H.
UK multicentre project on assessment of risk of trisomy 21 by maternal age and fetal
nuchal translucency thickness at 10 - 14 weeks of gestation.
Lancet.
1998;
352
343-346
6 von Kaisenberg C S, Hyett J A.
Chapter 3: Pathophysiology of increased nuchal translucency. Nicolaides KH, Sebire NJ, Snijders RJM (Series editor Nicolaides KH) The 11 - 14
Week Scan. London; The Parthenon Publishing Group 1999: 95-110
7
Clark E B.
Neck web and congenital heart defects: a pathogenic association in 45 X-O Turner syndrome?.
Teratology.
1984;
29
355-361
8
Miyabara S, Sugihara H, Maehara N, Shouno H, Tasaki H, Yoshida K, Saito N, Kayama F,
Ibara S, Suzumori K.
Significance of cardiovascular malformations in cystic hygroma: a new interpretation
of the pathogenesis.
Am J Med Genet.
1989;
34
489-501
9
Besson W T, Kirby M L, Van Mierop L H, Teabeaut J R.
Effects of the size of lesions of the cardiac neural crest at various embryonic ages
on incidence and type of cardiac defects.
Circulation.
1986;
73
360-364
10
Halford S, Wadey R, Roberts C, Daw S C, Whiting J A, O'Donnell H, Dunham I, Bentley D,
Lindsay E, Baldini A. et al .
Isolation of a putative transcriptional regulator from the region of 22 q11 deleted
in DiGeorge syndrome, Shprintzen syndrome and familial congenital heart disease.
Hum Mol Genet.
1993;
2
2099-2107
11
von Kaisenberg C S, Krenn V, Ludwig M, Nicolaides K H, Brand-Saberi B.
Morphological classification of nuchal skin in fetuses with trisomy 21, 18 and 13
at 12 - 18 weeks and in a trisomy 16 mouse.
Anat Embryol.
1998;
197
105-124
12
Hyett J, Perdu M, Sharland G, Snijders R, Nicolaides K H.
Using fetal nuchal translucency to screen for major congenital cardiac defects at
10 - 14 weeks of gestation: population based cohort study.
BMJ.
1999;
318
81-85
13
Zosmer N, Souter V L, Chan C S, Huggon I C, Nicolaides K H.
Early diagnosis of major cardiac defects in chromosomally normal fetuses with increased
nuchal translucency.
Br J Obstet Gynaecol.
1999;
106
829-833
14
Ghi T, Huggon I C, Zosmer N, Nicolaides K H.
Incidence of major structural cardiac defects associated with increased nuchal translucency
but normal karyotype.
Ultrasound Obstet Gynecol.
2001;
18
610-614
15
Bronshtein M, Zimmer E Z.
The sonographic approach to the detection of fetal cardiac anomalies in early pregnancy.
Ultrasound Obstet Gynecol.
2002;
19
360-365
16
Simpson J M, Sharland G K.
Nuchal translucency and congenital heart defects: heart failure or not?.
Ultrasound Obstet Gynecol.
2000;
16
30-36
17
Galindo A, Comas C, Martinez J M, Gutierrez-Larraya F, Carrera J M, Puerto B, Borrell A,
Mortera C, de la Fuente P.
Cardiac defects in chromosomally normal fetuses with increased nuchal translucency
at 10 - 14 weeks of gestation.
J Matern Fetal Neonatal Med.
2003;
13
163-170
18
Huggon I C, DeFigueiredo D B, Allan L D.
Tricuspid regurgitation in the diagnosis of chromosomal anomalies in the fetus at
11 - 14 weeks of gestation.
Heart.
2003;
89
1071-1073
19
Hyett J A, Brizot M L, von Kaisenberg C S, McKie A T, Farzaneh F, Nicolaides K H.
Cardiac gene expression of atrial natriuretic peptide and brain natriuretic peptide
in trisomic fetuses.
Obstet Gynecol.
1996;
87
506-510
20
Montenegro N, Matias A, Areias J C, Castedo S, Barros H.
Increased fetal nuchal translucency: possible involvement of early cardiac failure.
Ultrasound Obstet Gynecol.
1997;
10
265-268
21
Rizzo G, Muscatello A, Angelini E, Capponi A.
Abnormal cardiac function in fetuses with increased nuchal translucency.
Ultrasound Obstet Gynecol.
2003;
21
539-542
22
Salomon L J, Bernard J P, Taupin P, Benard C, Ville Y.
Relationship between nuchal translucency at 11 - 14 weeks and nuchal fold at 20 -
24 weeks of gestation.
Ultrasound Obstet Gynecol.
2001;
18
636-643
23
Van der Putte S CJ, Van Limborogh J.
The embryonic development of the main lymphatics in man.
Acta Morphol Neerl-Scand.
1980;
18
323-335
24
Van der Putte S CJ.
Lymphatic malformation in human fetuses.
Virchows Arch [A].
1977;
376
233-246
25
Chitayat D, Kalousek D K, Bamforth J S.
Lymphatic abnormalities in fetuses with posterior cervical cystic hygroma.
Am J Med Genet.
1989;
33
352-356
26
Vittay P, Bosze P, Gaal M, Laszlo J.
Lymph vessel defects in patients with ovarian dysgenesis.
Clin Genet.
1980;
18
387-391
27
von Kaisenberg C S, Nicolaides K H, Brand-Saberi B.
Lymphatic vessel hypoplasia in fetuses with Turner syndrome.
Hum Reprod.
1999;
14
823-826
28
von Kaisenberg C S, Nicolaides K H, Christ B, Meinhold-Heerlein I, Brand-Saberi B.
Distribution of lymphatics and blood vessels in the nuchal skin of aneuploid fetuses.
Anat Embryol.
2004;
submitted
29
Tamagnone L, Lahtinen I, Mustonen T, Virtaneva K, Francis F, Muscatelli F, Alitalo R,
Smith C IE, Larsson C, Alitalo K.
BMX, a novel nonreceptor tyrosine kinase gene of the BTK/ITK/TEC/TXK family located
in chromosome Xp22. 2.
Oncogene.
1994;
9
3683-3688
30
Rodriguez-Niedenfuhr M, Papoutsi M, Christ B, Nicolaides K H, von Kaisenberg C S,
Tomarev S I, Wilting J.
Prox1 is a marker of ectodermal placodes, endodermal compartments, lymphatic endothelium
and lymphangioblasts.
Anat Embryol.
2001;
204
399-406
31
Wilting J, Papoutsi M, Christ B, Nicolaides K H, von Kaisenberg C S, Borges J, Stark G,
Alitalo K, Tomarev S J, Niemayer C, Rossker J.
The transcription factor Prox1 is a marker of lymphatic endothelial cells in normal
and diseased human fetuses.
FASEB J.
2002;
16
1271-1273
32
Souka A P, Krampl E, Geerts L, Nicolaides K H.
Congenital lymphedema presenting with increased nuchal translucency at 13 weeks of
gestation.
Prenat Diagn.
2002;
22
91-92
33
Evans A L, Brice G, Sotirova V, Mortimer P, Beninson J, Burnand K, Rosbotham J, Child A,
Sarfarazi M.
Mapping of primary congenital lymphedema to the 5 q35.3 region.
Am J Hum Genet.
1999;
64
547-555
34
Irrthum A, Karkkainen M, Devriendt K, Alitalo K, Vikkula M.
Congenital hereditary lymphedema caused by a mutation that inactivates VEGFR 3 tyrosine
kinase.
Am J Hum Genet.
2000;
67
295-301
35
Karkkainen M J, Ferrell R E, Lawrence E C, Kimak M A, Levinson K L, Mc Tigue M A,
Alitalo K, Finegold D N.
Missense mutations interfere with VEGFR-3 signalling in primary lymphedema.
Nat Genet.
2000;
25
153-159
36
Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh V W, Fang G H, Dumont D, Breitman M.
Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic
endothelium during development.
Proc Natl Acad Sci USA.
1995;
92
3566-3570
37 Ayad S, Boot-Handford R P, Humphries M J, Kadler K E, Shuttleworth C A. The Extracellular
Matrix Facts Book. San Diego, CA, USA; Academic Press Inc 1994
38
von Kaisenberg C S, Brand-Saberi B, Christ B, Vallian S, Farzaneh F, Nicolaides K H.
Collagen type VI gene expression in the skin of trisomy 21 fetuses.
Obstet Gynecol.
1998;
91
319-323
39
Böhlandt S, von Kaisenberg C S, Wewetzer C, Christ B, Nicolaides K H, Brand-Saberi B.
Hyaluronic acid in the nuchal skin of chromosomally abnormal fetuses.
Hum Reprod.
2000;
15
1155-1158
40
Aliakbar S, Brown P R, Bidwell D, Nicolaides K H.
Human erythrocyte superoxide dismutase in adults, neonates, and normal, hypoxaemic,
anaemic, and chromosomally abnormal fetuses.
Clin Biochem.
1993;
26
109-115
41
von Kaisenberg C S, Prols F, Nicolaides K H, Maass N, Brand-Saberi B.
Glycosaminoglycans and proteoglycans in the skin of aneuploid fetuses with increased
nuchal translucency.
Human Reproduction.
2003;
18
2544-2561
PD Dr. med. C. S. von Kaisenberg
Universität von Schleswig-Holstein, Campus Kiel Klinik für Gynäkologie und Geburtshilfe
Michaelisstraße 16
24105 Kiel
Email: vkaisenberg@email.uni-kiel.de